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ABSTRACT 

 

Whole genome sequencing has been rapidly developed and widely used, made 

possible by exponentially decreasing cost and computational advances in 

biological sequence analysis. Massive amount of viral sequences has been 

produced. By Oct 2016, over 102,000 of records has been archived in NCBI Viral 

Genome Project and 7730 genomes are RefSeq genomes.  To better understand 

viral classification, phylogenomic analysis, which based on whole-genome 

information, provides the possibility of reconstructing a “tree of life”. However, there 

are difficulties to apply phylogenomic methods to large-scale viral genomes. In this 

study, we designed a 3-step strategy for identifying the optimal length of K-mer in 

a viral phylogenomic analysis using genomic alignment-free method. These three 

steps include:  1) Cumulative Relative Entropy, 2) Average Number of Common 

Features among genomes, and 3) Shannon Diversity Index. A dendrogram of 3905 

RefSeq viral genomes has also been constructed by using the optimal K = 9. The 

resulting dendrogram shows consistency with the viral taxonomy and the Baltimore 

classification of viruses. 

  



www.manaraa.com

 

vi 

 

TABLE OF CONTENTS 

Chapter One Introduction ...................................................................................... 1 

NCBI Viral Genomes Project ......................................................................... 1 

NCBI RefSeq Database ................................................................................. 1 

Phylogenetic Analysis vs. Phylogenomic Analysis ......................................... 1 

Alignment-free Methods ................................................................................. 2 

Feature Frequency Profile Method ................................................................ 3 

Chapter Two Manuscript: Viral Phylogenomics using Alignment-free Method: How 

to find an optimal length of length of K-mer? ........................................................ 4 

Abstract ............................................................................................................. 5 

Introduction ....................................................................................................... 5 

Results .............................................................................................................. 9 

Dataset and information content evaluation ................................................... 9 

Assessment of Optimal Feature Length (K) ................................................. 11 

Cumulative Relative Entropy (CRE) ............................................................. 11 

Average Number of Common Features (ACF)............................................. 12 

All observed feature occurrences in genomes ............................................. 14 

What is the optimal feature length? ............................................................. 18 

Phylogenomic Analysis of 3905 viral RefSeq genomes ............................... 22 

Statistical Analysis for Grouping Uncertainty ............................................... 24 

Subgroup Dendrograms .............................................................................. 25 

Discussion ....................................................................................................... 26 

Materials and Methods .................................................................................... 28 

Dataset ........................................................................................................ 28 

Feature Frequency Profile (FFP) and Phylogenomic Trees ......................... 29 

Optimal feature lengths ................................................................................ 29 

Evaluation of grouping uncertainty ............................................................... 32 

Acknowledgements ......................................................................................... 33 

Author contribution Statement ......................................................................... 33 



www.manaraa.com

 

vii 

 

Competing financial interests .......................................................................... 33 

Chapter Three Conclusions ................................................................................ 34 

List of References ............................................................................................... 35 

Appendix ............................................................................................................. 42 

Supplement Materials ...................................................................................... 43 

Vita ...................................................................................................................... 53 

 

 

  



www.manaraa.com

 

viii 

 

LIST OF TABLES 

 

 

Table 1 Numbers of all observed non-redundant features in 3905 genomes and in 

subgroups. ................................................................................................... 16 

Table 2 Summary for optimal feature length. ...................................................... 21 

Table S 1 Baltimore classification and ICTV Orders Information ........................ 43 

Table S 2 Wilcoxon rank sum test result of the top 10 highest members of viral 

family. .......................................................................................................... 52 
  
 



www.manaraa.com

 

ix 

 

LIST OF FIGURES 

 

 

Figure 1 Distribution of genome size for 3905 viral genomes in semi- logX scale.

 ..................................................................................................................... 10 

Figure 2 Cumulative Relative Entropy curves for 3905 viral RefSeq genomes. The 

curves start to fall below 10% of the maximum at k = 9 and most genomes 

satisify the criteria at k=13. Subgroups Q1, Q2, Q3 and Q4 are colored as 

green, yellow, orange and red. .................................................................... 10 

Figure 3 Average Number of Common Features (ACF) for 3905 viral RefSeq 

genomes. Each curve shows the ACF numbers between this individual 

genome and other 3904 genomes. Subgroups Q1, Q2, Q3 and Q4 are colored 

by green, yellow, orange and red. ................................................................ 13 

Figure 4 Average Number of Common Features (ACF) for viral RefSeq genomes 

in four subgroups. A) Q1 subgroup (genome size < 25% quartile): 976 

genomes, colored by green; B) Q2 subgroup (genome size in 25% -50% 

quartiles): 977 genomes, colored by yellow; C) Q3 subgroup (genome size in 

50%-75% quartiles): 977 genomes, colored by orange; D) Q4 subgroup 

(genome size > 75% quartile): 977 genomes, colored by red. ..................... 15 

Figure 5 Distribution of feature occurrences in genomes. A dot represents a unique 

kmer. Y axis represents proability (kmer fraction) calculated from the observed 

frequency of individual kmer divided by total number of observed kmer, X axis 

represents number of genomes that share the same kmers. ....................... 17 

Figure 6 Shannon Diversity Index for feature occurrence in genomes as a function 

of kmer length. ............................................................................................. 19 

Figure 7 Shannon Diversity Index for feature occurrence in four subgroups a 

function of kmer length. Q1 subgroup (genome size < 25% quartile): 976 

genomes, colored by green; Q2 subgroup (genome size in 25% -50% 

quartiles): 977 genomes, colored by yellow; Q3 subgroup (genome size in 



www.manaraa.com

 

x 

 

50%-75% quartiles): 977 genomes, colored by orange; Q4 subgroup (genome 

size > 75% quartile): 977 genomes, colored by red. .................................... 20 

Figure 8 Robinson-Foulds distance between trees at feature length k (5, 6, 7, ...) 

and k +1. ...................................................................................................... 21 

Figure 9 Optimal dendrogram of 3905 RefSeq viral genomes (k = 9). The braches 

are colored by Baltimore Classifications. The circles, from inside to outside, 

are colored by different orders, hosts and genome sizes. [Color information: 

(A) Branch: Baltimore Classification; dsDNA, no RNA stage: red; dsRNA: 

green; Retro-transcribing viruses: pink; ssDNA: blue; ssRNA negative-strand: 

bright blue; ssRNA positive-strand: yellow. (B) From inside to outside, first 

circle: Order; Caudovirales: red; Herpesvirales: green; Ligamenvirales: blue; 

Mononegavirales: orange; Nidovirales: cyan: Picornavirales: pink; 

Tymovirales: dark green; unclassified: silver; (C) From inside to outside, 

second circle: Host; protest: orange; archaea: red; bacteria: dark green; fungi: 

blue; animal: cyan; animal and plants: pale violet red; plant: pink; environment 

or NA: silver. (D) From inside to outside, third circle: genome size: Q1: Green, 

Q2: Yellow, Q3: Orange, Q4: Red.] ............................................................. 23 

Figure 10 The 3-step assessment to obtain optimal feature lengths (k). ............. 30 

Figure S1 Distribution of feature occurrences in subgroup Q1 (size < 25%)....... 44 

Figure S2 Distribution of feature occurrences in subgroup Q2 (25% < size < 50%)

 ..................................................................................................................... 45 

Figure S3 Distribution of feature occurrences in subgroup Q3 (50% < size < 75%)

 ..................................................................................................................... 46 

Figure S4 Distribution of feature occurrences in subgroup Q4 (size > 75%)....... 47 

Figure S5 Dendrogram of 976 RefSeq viral genomes in subgroup Q1 (genome 

size < 25%), when k=9. The braches are colored by Baltimore Classifications. 

The circles, from inside to outside, are colored by different orders and hosts. 

[Color information: (A) Branch: Baltimore Classification; dsDNA, no RNA 

stage: red; dsRNA: green; Retro-transcribing viruses: pink; ssDNA: blue; 



www.manaraa.com

 

xi 

 

ssRNA negative-strand: bright blue; ssRNA positive-strand: yellow. (B) From 

inside to outside, first circle: Order; Caudovirales: red; Herpesvirales: green; 

Ligamenvirales: blue; Mononegavirales: orange; Nidovirales: cyan: 

Picornavirales: pink; Tymovirales: dark green; unclassified: silver; (C) From 

inside to outside, second circle: Host; protest: orange; archaea: red; bacteria: 

dark green; fungi: blue; animal: cyan; animal and plants: pale violet red; plant: 

pink; environment or NA: silver.] .................................................................. 48 

Figure S6 Dendrogram of 977 RefSeq viral genomes in subgroup Q2 (genome 

size: 25%-50%), when k=10. The braches are colored by Baltimore 

Classifications. The circles, from inside to outside, are colored by different 

orders and hosts. [Color information: (A) Branch: Baltimore Classification; 

dsDNA, no RNA stage: red; dsRNA: green; Retro-transcribing viruses: pink; 

ssDNA: blue; ssRNA negative-strand: bright blue; ssRNA positive-strand: 

yellow. (B) From inside to outside, first circle: Order; Caudovirales: red; 

Herpesvirales: green; Ligamenvirales: blue; Mononegavirales: orange; 

Nidovirales: cyan: Picornavirales: pink; Tymovirales: dark green; unclassified: 

silver; (C) From inside to outside, second circle: Host; protest: orange; 

archaea: red; bacteria: dark green; fungi: blue; animal: cyan; animal and 

plants: pale violet red; plant: pink; environment or NA: silver.]..................... 49 

Figure S7 Dendrogram of 977 RefSeq viral genomes in subgroup Q3 (genome 

size: 50%-75%), when k=11. The braches are colored by Baltimore 

Classifications. The circles, from inside to outside, are colored by different 

orders and hosts. [Color information: (A) Branch: Baltimore Classification; 

dsDNA, no RNA stage: red; dsRNA: green; Retro-transcribing viruses: pink; 

ssDNA: blue; ssRNA negative-strand: bright blue; ssRNA positive-strand: 

yellow. (B) From inside to outside, first circle: Order; Caudovirales: red; 

Herpesvirales: green; Ligamenvirales: blue; Mononegavirales: orange; 

Nidovirales: cyan: Picornavirales: pink; Tymovirales: dark green; unclassified: 

silver; (C) From inside to outside, second circle: Host; protest: orange; 



www.manaraa.com

 

xii 

 

archaea: red; bacteria: dark green; fungi: blue; animal: cyan; animal and 

plants: pale violet red; plant: pink; environment or NA: silver.]..................... 50 

Figure S8 Dendrogram of 977 RefSeq viral genomes in subgroup Q4 (genome 

size: >75%), when k=12. The braches are colored by Baltimore 

Classifications. The circles, from inside to outside, are colored by different 

orders and hosts. [Color information: (A) Branch: Baltimore Classification; 

dsDNA, no RNA stage: red; dsRNA: green; Retro-transcribing viruses: pink; 

ssDNA: blue; ssRNA negative-strand: bright blue; ssRNA positive-strand: 

yellow. (B) From inside to outside, first circle: Order; Caudovirales: red; 

Herpesvirales: green; Ligamenvirales: blue; Mononegavirales: orange; 

Nidovirales: cyan: Picornavirales: pink; Tymovirales: dark green; unclassified: 

silver; (C) From inside to outside, second circle: Host; protest: orange; 

archaea: red; bacteria: dark green; fungi: blue; animal: cyan; animal and 

plants: pale violet red; plant: pink; environment or NA: silver.]..................... 51 



www.manaraa.com

 

1 

 

CHAPTER ONE  

INTRODUCTION 

NCBI Viral Genomes Project 

Over the past decade, DNA sequencing technology has been rapidly developed 

and widely used, while the cost of DNA sequencing falls off exponentially 1. Benefit 

by the reducing sequencing cost and the rising throughput, massive amount of 

microbial whole-genome sequences have been used in microbial identification and 

characterization 2,3. For viral genomic research, the National Center for 

Biotechnology Information (NCBI) Viral Genomes Project has produced over 

102,000 of records representing thousands of different species by October 6, 

2016, and this number has increased explosively since the new millennium 4.  

NCBI RefSeq Database 

To better represent the complete sequence information for any given species, the 

viral NCBI Reference Sequence (RefSeq) database provides a curated, non-

redundant sequence collection of viral genomes 5. Among different complete 

genome sequences from various isolates and strains in the same species, only 

one sequence would be selected as a reference to work as a molecular standard 

4. As of October 2016, 7730 genomes have been archived in viral RefSeq 

database.  

Phylogenetic Analysis vs. Phylogenomic Analysis 

Phylogenetic analysis is the means of inferring or estimating evolutionary 

relationships among molecules, organisms or both 6. It is widely used for microbial 

characterization 7,8, gene and protein function prediction 9,10 , drug development 11, 

and other biomedical areas. Generally, a basic phylogenetic analysis has four 

steps: alignment, model selection, tree building and tree evaluation 6.  The 

phylogenetic alignment is all about mapping the relationships between residues in 
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a set of DNA/RNA sequences or amino acid sequences, in order to produce 

plausible hypotheses of evolutionary homology among these residues 12. The most 

popular methods of constructing phylogenetic trees fall into three categories: 1) 

distance-based methods: such as Neighbor Joining (NJ), Unweighted Pair Group 

Method with Arithmetic Mean (UPGMA); 2) Maximum parsimony; 3) maximum 

likelihood methods. The commonly used valuation methods are Bootstrap 13 and 

Jackknife14.  

 

However, for prokaryotes, phylogenetic trees based on small subunit ribosomal 

RNAs (SSU rRNAs) often do not agree with those based on different genes. More 

genes and genomes sequenced, more conflicts have been found among gene 

trees 15. For viruses, proteins are very diverse and it is difficult to reconstruct 

phylogenetic tree based on conserved proteins among various viruses, especially 

when some viruses only have one or two genes. To get more robust information 

for phylogeny inference, phylogenomic trees have been constructed based on 

whole-genome/ whole-proteome information. Most phylogenomic methods are 

either sequence-based, such as multiple alignment and supertree/supermatrix 

construction, or based on whole-genome features like gene orders, gene content 

and DNA-string comparisons 15. Nonetheless, these phylogenomic methods still 

have some problems with huge tree space, assessing the statistical confidence of 

trees and “divide-conquer” resolution, etc 15.  

Alignment-free Methods 

For phylogenomic analysis of large-scale genomes, especially highly diverse ones, 

alignment-free methods have been increasingly used in the past few years 16–19. 

These alignment-free methods could be classified into two categories, according 

to different theoretical basis: one based on statistics of word frequency, the other 

on Kolmogorov complexity and chaos theory 20. Comparing to alignment-based 

methods, these alignment-free methods are of a linear complexity and efficient 21. 



www.manaraa.com

 

3 

 

Different from traditional model-based phylogenetic analysis, alignment-free 

phylogeny may not provide an evolutionary interpretation but perform as 

“dendrogram”. However, alignment-free methods are essential to compare large-

scale distant genomes, since they greatly accelerate the computation speed and 

solve the sequence comparison problem that cannot be otherwise done by 

alignment-based methods. 

Feature Frequency Profile Method 

Sims et al. 22 introduced an alignment-free method that uses a measure based on 

Jensen–Shannon Divergence between Feature Frequency Profiles (FFPs), where 

the features, called K-mers, are short nucleotide or amino acid sequences of length 

K. This FFP method has been applied in previous eukaryotic and prokaryotic 

studies 23,24, and shows great agreement with organism taxonomies. For viruses, 

this method was also applied to whole-proteome sequences of 142 large dsDNA 

viruses 25. However, there is little work available on using FFP to determine the 

phylogeny of large-scale viral genomes 26,27. 

 

A major challenge is identifying the optimal K-mer length when using the FFP 

method for comparing whole genomes. In previous studies 24,25,28, the optimal K 

has been identifies as the value when both Cumulative Relative Entropy (CRE) 

and Relative Sequence Divergence (RSD) decrease to less than 10% of their 

maximum values as K is increased. However, we found these two criteria cannot 

be achieved when we construct a phylogenomic tree of thousand viral genomes 

with various genome sizes. To solve this problem, we developed a comprehensive 

strategy for identifying the optimal length of k-mer in our large-scale viral 

phylogenomic analysis, which includes Cumulative Relative Entropy, Average 

Number of Common Features among genomes and Shannon Diversity Index to 

identify the optimal K-mer. 
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Abstract 

Development of genome sequencing sheds a new light on the classification of 

viruses. The NCBI provides about two million nucleotide sequences of viruses, and 

thousands of viral reference sequences that cover a wide range of viral taxonomy 

in the RefSeq database. Whole genome information has been used to obtain a 

better classification, and it may open new possibilities for the viral “tree of life”. 

However, it is not feasible to build the tree of life using traditional phylogenetic 

methods based on conserved proteins due to the lack of evolutionary conservation 

among diverse viruses. In this study, we employed alignment-free method which 

uses K-mers as genomic features for large-scale comparison of complete viral 

genomes available in RefSeq. To determine optimal feature length K, which is 

essential step to obtain a good dendrogram, we designed a comprehensive 

strategy that uses a combination of key three strategies: 1) Cumulative Relative 

Entropy; 2) Average Number of Common Features among genomes 3) Shannon 

Diversity Index to identify the optimal K-mer. Ultimately, we derived a procedure to 

decide the optimal feature length for the comparison of all 3905 complete viral 

genomes. The optimal dendrogram showed great consistency with viral taxonomy 

of ICTV and Baltimore classification.   

 

Introduction 

Whole genome sequencing (WGS) is now commonly used 29–31, made possible by 

exponential reductions in the cost of sequencing 32 and computational advances 

in biological sequence analysis 33,34. Viral taxonomy, in particular, has benefited 

from the availability of many new viral genome sequences, enabling improved 

classification of viruses. In support of viral genomics research, the NCBI Viral 

Genome Project 35 provides thousands of viral reference sequences that cover a 

wide range of viral taxonomic species in the NCBI Reference Sequence Database. 

The classification of viruses is maintained by the International Committee on 
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Taxonomy of Viruses (ICTV), which considers multiple viral properties and 

consensus data 4, including similarities in genome structures, host ranges, and the 

presence of homologous genes and various phylogenetic features 36. Although 

viral taxa have been continuously updated by the virus research community 37,38, 

there are still many misclassifications in ICTV viral taxonomy 39.  Further, 

sequencing of viral metagenomics samples often results in many viral genomes 

that are of unknown origin 40,41. 

 

Phylogenetic analysis is widely used for taxonomic identification, characterization, 

and revision 42,43. However, for prokaryotic genomes, phylogenetic trees based on 

SSU rRNAs often do not agree with those based on different genes. Conflicts 

among gene trees have increased as more genes and genomes are sequenced 

15. This incongruence is caused by many reasons, including tree-building errors, 

incomplete lineage sorting, hidden paralogy, and horizontal gene transfer (HGT). 

For viruses, as early as 1996, inconsistent phylogenetic trees were obtained when 

using different numbers of isolates or different lengths of aligned sequences in a 

study of hepatitis C viruses 44. Similar inconsistencies have been reported for 

human papillomaviruses 45, SARS coronavirus 46, and some plant viruses 47.  

 

Phylogenomic trees constructed using whole-genome sequences are based on a 

more complete set of genomic information than phylogenies based on individual 

genes 48. For large-scale comparisons of genome-scale sequences, especially 

highly diverse ones, alignment-free methods of phylogeny construction have been 

increasingly used in the past few years 16–19. There are two categories of 

alignment-free methods for phylogenomic analysis: one based on statistics of word 

frequency, the other on Kolmogorov complexity and chaos theory20. The primary 

advantage of these methods is that they enable quick genome-scale comparisons 

with linear time complexity (O(n))21, more efficiently than minimum likelihood or 

Bayesian alignment methods with sub-quadratic time complexity (o(n2)). Another 
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advantage of alignment-free methods is that they can be used to compare 

sequences from unfinished genomes, with information loss proportional to the 

number of discontinuities in a genome. However, alignment-free methods do not 

capture the nuances of evolutionary models that incorporate site-dependent 

substitution patterns. Therefore, it is not possible to interprete branch lengths of 

alignment-free based trees in terms of mutation rates, even though alignment-free 

trees constructed from whole genome sequences capture taxonomic classification 

(which reflects the evolutionary history of organisms) better than 16S rRNA 

alignment based trees for prokarytoes21.  

 

Sims et al. 22 introduced an alignment-free method that uses a measure based on 

Jensen–Shannon Divergence between Feature Frequency Profiles (FFPs), where 

the features, called K-mers, are short nucleotide or amino acid sequences of length 

K. Applied in eukaryote and prokaryote sytems, this approach shows great 

agreement with taxonomic information accepted  by scientific community 23,24. For 

viruses, Wu et al. 25 applied the FFP method to whole-proteome sequences of 142 

large dsDNA eukaryote viruses, and Huang et al. used this approach when 

evaluating different methods for phylogenetic analysis of multiple-segmented 

viruses 49,50.  To date, however, relatively little work has been done using FFP to 

determine the phylogeny of virus genomes 51, and there are only a few reports 26,27 

on construction of phylogenetic trees from thousands of viral genomes.  

 

In general, genome-scale phylogenetic trees can be built using either whole-

genome sequences or whole-proteome sequences. However, some viruses have 

only one or two genes from which protein sequences can be predicted, and viral 

proteins tend to be very diverse. As a consequence, it is not feasible to build a viral 

“tree of life” based on conserved proteins. We have, therefore, used an FFP 

approach applied to complete viral genome sequences and have built a 

dendogram of viruses. 
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A major challenge in using the FFP method for comparing whole genomes is 

determining the optimal K-mer length. In previous studies of dsDNA eukaryote 

viruses [19, 22, 23], the optimal feature length was based on Cumulative Relative 

Entropy (CRE) and Relative Sequence Divergence (RSD). For each individual 

genome and a value of K, the CRE, determined by a comparison of the observed 

FFP and the expected FFP from a second-order Markov model, captures how 

much information of the whole genome sequence is encoded in the FFP. In other 

words, CRE indicates the power of the FFP to reconstruct the whole genome 

sequence. Smaller CRE values, which result from longer K-mers, are indicitave of 

the ability to better identify individual genomes. For a whole genome, the RSD for 

a value of K is a measure of the relatedness of the genome sequence (in terms of 

FFP) to a random sequence of the same length. According to Wu et al. 25, the 

optimal value of K is the value when both CRE and RSD decrease to less than 

10% of their maximum values as K is increased.  

 

Determining RSD values becomes increasingly computationally complex as the 

number of genomes grows. This increase in complexity is due, in part, to an 

increase in the density of the K-mer feature space. We found RSD cannot 

monotonically decrease when k increases, which is probably because this huge 

dimersional K-mer space can cover artificial K-mers (K-mers derived from random 

sequences), even though their probability are quite low. However, calculation of 

RSD values becomes increasingly complex as the number of genomes grows. This 

increase in complexity is due, in part, to an increase in the density of the K-mer 

feature space. 

 

In this study, we consider 3905 complete viral genomes available in the NCBI 

Reference Sequence Database (RefSeq) 52. We show that CRE is significantly 

influenced by genome size as well as K-mer composition. Genomes of different 

sizes show different trend CRE curves. For small viral genomes (~3kb), CRE 
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values drop to zero around K value of 6; for large viral genomes (1Mb or more), 

the drop increases to K value of 10. Consequently, CRE values for genomes of 

greatly various size cannot simultaneously be decreased to less than 10% of 

maximum values at the fixed feature length as suggested by Wu et al [23]. 

Accordingly, we first group viral genomes by genome size. For each group, we 

propose the optimal K-mer length considering several genomic features, including 

the CRE value, the number of K-mers shared by genomes, and the total number 

of K-mers observed, and construct a dendrogram at its optimal K-mer length. 

Finally, we derive a procedure to decide the optimal feature length for the 

comparison of all 3905 complete viral genomes. The tree of life of viral whole-

genomes constructed by our precedure of alignment-free method is visualized 

using the optimal feature length for the global view. 

 

Results 

Dataset and information content evaluation 

The non-redundant dataset includes 3905 complete genomes of RefSeq viruses 

as summarized in Table. S1. The smallest genome is the Anguilla anguilla 

circovirus (NC_023421), with a length of 1,378 nt and the largest genome is 

Pandoravirus salinus (NC_022098), which is 2,473,870 nt long. The distribution of 

genome sizes is depicted as the density plot in Figure 1. The long tail is on the 

right shows there are some large genome sizes as outliers such as 

Pandoraviruses, Megaviruses, Mimiviruses and other giant viruses. It is worth 

mentioning that, after determining the Cumulative Relative Entropy (CRE) values 

as shown in Figure 2, we noted that the recommended range for K-mer length 

varies greatly, depending on genome size, and divided the dataset into 4 arbitary 

subgroups (Q1 - Q4) using the 25%, 50% and 75% quartiles of 6,407, 12,141 and 

45,242 bp, respectively. 
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Figure 1 Distribution of genome size for 3905 viral genomes in semi- logX scale. 

 

 

Figure 2 Cumulative Relative Entropy curves for 3905 viral RefSeq genomes. The curves start to 

fall below 10% of the maximum at k = 9 and most genomes satisify the criteria at k=13. 

Subgroups Q1, Q2, Q3 and Q4 are colored as green, yellow, orange and red. 
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Assessment of Optimal Feature Length (K) 

Since the criteria used by Wu et al. 25 are not directly applicable to our large-scale 

virus dataset, due to the dependence of CRE on genome size, we determined 

optimal feature length based on three criteria: 1) from an individual genome 

perspective, using Cumulative Relative Entropy (CRE) to find the minimum feature 

length: where the genome curves reach zero CRE or fall to <10% of their CRE 

maximum values; this CRE value is the original criterion of optimal feature lengths 

in previous published papers24,25,28; 2) from a pairwise comparison perspective,  

Average Number of Common Features (ACF) among genomes is applied to 

determine the maximum feature length: the length prior to ACF dropping to a lower 

value; this ACF criterion is defined as the average number of common features 

when comparing pairwise to each of the other genomes at a specific feature length; 

3) from an “all genomes comparison” perspective, we measure commonness of K-

mers among all genomes in our dataset in terms of diversity index to narrow the 

range of optimal feature length down. Shannon Diversity Index is used to quantity 

the diversity of commonness of K-mers using fraction of K-mers shared by 

genomes. The preferred length is the one with higher Shannon Diversity Index 

value (which represents more diversity of commonness of K-mers) in the range 

suggested from criteria (1) and (2); 4) additionally, the tree stability, which is based 

on Robinson-Foulds distance, is also considered as supporting information, 

especially when multiple lengths in the range are suggested (see Materials and 

Methods Section for more details). 

Cumulative Relative Entropy (CRE) 

 For each individual genome, CRE values were calculated by increasing K-mer 

length from 5 to 15. We plotted CRE values for 3905 reference viral genomes, 

illustrated in Figure 2, which is colored by genome size and is ordered from 

smallest to largest genome. Cumulative Relative Entropy (CRE) curves do not 

simultaneously drop to <10% of maximum CRE for all genomes, which is the 
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selection criterion that Wu et al. 25 recommend. When curves for smaller genomes 

achieve that goal, some curves for larger genomes are still at a plateau. At K = 9, 

the curves of small genomes start to fall below 10% of maximum CREs, and 

roughly 50% of all CREs drop below 20% of their maxima. At larger values of K (K 

= 10, 11 and 12), more genome CREs satisfy the less than 10% of maximum 

criterion. When K = 13, the CRE values of most genomes fall below 10% of 

maximum CREs. However, K = 13 cannot be simply chosen as the optimal feature 

length, because it might be too large (no information left) for small genomes. By 

quartile, the optimal K-mer lengths for subgroups Q1, Q2, Q3, and Q4 are 

determined to be 9 to 11, 10 to 12, 11 to 13 and 12 to 15, respectively. Therefore, 

we initially determined the optimal range of K-mer lengths for the entire set of 3905 

genomes to be 9 to 13. This range will be refined in the following steps. 

Average Number of Common Features (ACF) 

Previously computed RSD values were found to not work as expected (that is, they 

did not converge to zero after reaching the optimal feature length). Because of this, 

we did not use the comparison with random feature space, and instead we only 

used the denominator of RSD to explore the common features between pairwise 

genomes, which we call the ‘Average Number of Common Features’ (ACF). For 

each genome, the Average Number of Common Features is defined as the 

average number of common features from a pairwise comparison of all the other 

genomes at a specific feature length (See Materials and Methods). Because FFP 

is a pairwise-comparing method, the ACF is not expected to be very low at the 

specific feature length. Otherwise, the obtained information will tend to be 

randomized, which means it could produce a random phylogeny. 

First, in order to reveal the shared degree of features at different length, we 

calculated ACF among 3905 RefSeq viral genomes by comparing each genome 

with the other 3904 ones at different feature lengths, as plotted in Figure 3.  The  
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Figure 3 Average Number of Common Features (ACF) for 3905 viral RefSeq genomes. Each 

curve shows the ACF numbers between this individual genome and other 3904 genomes. 

Subgroups Q1, Q2, Q3 and Q4 are colored by green, yellow, orange and red. 
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ACF plot demonstrated that few features are shared when the feature length is 

larger than 11 (k >11). As a result, the maximal feature length for 3905 genomes 

should be 11 nucleotides. So, the range based on CRE values is reduced to the 

range between 9 to 11.  These curves were also colored by different levels of 

genome sizes, as in subgroups Q1, Q2, Q3 and Q4. Apparently, the ACFs stack 

up with increase of genome size. As we estimated, when k = 13, many of the 

features of small genomes (in Q1 subgroup) are shared, which implies that we 

cannot only consider only CRE criterion to choose the optimal k.  

Finally, we also calculated ACF values for subgroups (Figure 4), by comparing 

each genome with the other 995 or 996 ones in the same quartile. The maximal 

optimal feature lengths for Q1, Q2, Q3 and Q4 are found to be 10, 11, 12 and 13. 

As a result, the optimal feature ranges are reduced to 9-10, 10-11, 11-12 and 12-

13. 

All observed feature occurrences in genomes 

The unions of all observed features at different lengths have been calculated and 

compared with theoretical occurrences, as shown in Table 1. Obviously, the 

numbers of observed non-redundant features increase exponentially as powers of 

alphabetical size (4 for nucleotide sequences); when k <13, the total redundant 

feature number (165,838,971) largely covers the expected feature space. 

However, when k > 13, the numbers of observed non-redundant features grow 

more slowly in subgroups, all of the numbers also present the similar trends.  

The optimal K-mer length necessary for construction of a good dendrogram should 

give the balance of overlap and unique features among the genome dataset. To 

illustrate the relationship between “all features” and “all genomes”, the distribution 

of feature occurrences in genomes is calculated and plotted. As shown in Figure 

5. When the feature length is small (k = 5, 6), most features can be found in most 

genomes; when feature length is large (k = 14, 15), most features (>50% or 80%)  
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Figure 4 Average Number of Common Features (ACF) for viral RefSeq genomes in four 

subgroups. A) Q1 subgroup (genome size < 25% quartile): 976 genomes, colored by green; B) 

Q2 subgroup (genome size in 25% -50% quartiles): 977 genomes, colored by yellow; C) Q3 

subgroup (genome size in 50%-75% quartiles): 977 genomes, colored by orange; D) Q4 

subgroup (genome size > 75% quartile): 977 genomes, colored by red. 
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Table 1 Numbers of all observed non-redundant features in 3905 genomes and in subgroups. 

K Expected (4k) Observed Observed in subgroups 
   Q1 Q2 Q3 Q4 

5 1,024 1,024 1,024 1,024 1,024 1,024 
 %obs/exp   100 100 100 100 100 
6 4,096 4,096 4,096 4,096 4,096 4,096 
 %obs/exp   100 100 100 100 100 
7 16,384 16,384 16,384 16,384 16,384 16,384 
 %obs/exp   100 100 100 100 100 
8 65,536 65,536 65,536 65,536 65,536 65,536 
 %obs/exp   100 100 100 100 100 
9 262,144 262,144 261,744 262,135 262,144 262,144 
 %obs/exp   100 99.84 99.99 100 100 
10 1,048,576 1,048,576 927,225 1,028,114 1,048,272 1,048,576 
 %obs/exp   100 88.42 98.04 99.97 100 
11 4,193,940 4,193,940 1,983,092 3,133,972 4,011,469 4,191,555 
 %obs/exp   99.99 47.28 74.72 95.64 99.94 
12 16,777,216 16,405,985 2,691,077 5,776,434 10,767,534 15,878,890 
 %obs/exp   97.79 16.04 34.43 64.17 94.64 
13 67,108,864 48,841,160 2,999,146 7,352,145 17,313,110 41,880,927 
 %obs/exp   72.78 4.46 10.95 25.79 62.40 
14 268,435,456 87,268,900 3,134,521 7,979,080 20,718,374 67,931,028 
 %obs/exp   32.51 1.16 2.97 7.71 25.30 
15 1,073,741,824 111,123,028 3,211,835 8,210,153 22,064,213 83,014,712 
 %obs/exp   10.35 0.29 0.76 2.05 7.73 
*Total number of redundant features for 3905 genomes is 165,838,971; all 
percentages are calculated based on expected ones. %obs/exp  = percent of 
obserbed/expected K-mer  
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Figure 5 Distribution of feature occurrences in genomes. A dot represents a unique kmer. Y axis 

represents proability (kmer fraction) calculated from the observed frequency of individual kmer 

divided by total number of observed kmer, X axis represents number of genomes that share the 

same kmers. 
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are unique (occurrence = 1). In both these scenarios, FFP cannot work efficiently. 

After all, the feature occurrences should be diverse to balance the similarity and 

dissimilarity when comparing all genomes. For this purpose, Shannon Diversity 

Index was applied and plotted with different feature lengths (Figure 6). From the 

curve, the diversity of feature occurrence peaks at k = 7, and then steadily. In this 

regard, k = 9 is more appropriate than 10 and 11 within our previous optimal feature 

range.  

 

For each of the four subgroups, we repeated the same process, and obtained 

Figure S1-S4 for distributions and Figure 7 for Shannon Diversity Index. Finally, 

the optimal feature length for Q1, Q2, Q3 and Q4 was determined as 9, 10, 11 and 

12, respectively.  

What is the optimal feature length? 

All results for above criteria have been summarized in Table 2. For the dendrogram 

of 3905 viral genomes, either 9 or 11 can be chosen as the optimal feature length. 

k = 10 has lower ACF and Shannon diversity indicating non-linear relationship in 

the dataset. When k = 9, CRE values have not dropped to <10% of their maximum, 

the other two criteria perform well. And when k = 11, most of CRE values drop to 

<10% of their maximum, while the Average Number of Common Features (ACF) 

is not good for small viral genomes. In this case, it is hard to choose between 9 

and 11, because neither of them can perfectly satisfy our three criteria.  So it makes 

sense to check the tree stability and use it as a supporting information for this 

study. To evaluate the tree stability, we calculated Robinson-Foulds distances 

between k (5, 6, 7…) and k+1 at different feature lengths. When the Robinson-

Foulds distances drop to a low value, it means the tree stability starts at this k point 

and tree topology does not change much as feature lengths increase. As shown in 

Figure 8, trees start to converge at k =9, so we will choose k = 9 as the optimal 

feature length of this dendrogram. Furthermore, since we want to obtain a global  
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Figure 6 Shannon Diversity Index for feature occurrence in genomes as a function of kmer length. 
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Figure 7 Shannon Diversity Index for feature occurrence in four subgroups a function of kmer 

length. Q1 subgroup (genome size < 25% quartile): 976 genomes, colored by green; Q2 

subgroup (genome size in 25% -50% quartiles): 977 genomes, colored by yellow; Q3 subgroup 

(genome size in 50%-75% quartiles): 977 genomes, colored by orange; Q4 subgroup (genome 

size > 75% quartile): 977 genomes, colored by red. 
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view of the relationship among RefSeq viral genomes, the ‘pairwise comparison 

perspective’ and ‘all genome comparison perspective’ are considered more 

important in this research, than exactly estimation of individual genomes, 

especially when all sequences are RefSeq whole genomes (not so similar and 

sensitive). For dendrograms of 4 subgroups Q1, Q2, Q3 and Q4, the optimal 

feature lengths have been identified as k = 9, 10, 11 and 12, respectively. 

 

Table 2 Summary for optimal feature length. 

 Whole database Q1 Q2 Q3 Q4 

Step 1: CRE 9, 10, 11, 12,13 
9, 10, 
11 

10, 11, 12 11, 12, 13 12, 13, 14 

Step 2: ACF 9, 10, 11 9,10 10, 11 11, 12 12, 13 
Step 3: feature 
Occurrence in 
genomes 

9 or 11* 9 10 11 12 

Optimal feature 
length 

9 or 11* 9 10 11 12 

*k = 9 performs best in step 3 and k = 11 performs best in step 1 
 

 

Figure 8 Robinson-Foulds distance between trees at feature length k (5, 6, 7, ...) and k +1. 
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Phylogenomic Analysis of 3905 viral RefSeq genomes 

Based on the 3 steps assessment, the dendrogram of all 3905 RefSeq viruses (k 

=9) is shown in Figure 9. This dendrogram is built by Neighbor Joining method 

using all FFP values as pairwise distances. As a whole, the taxonomic groupings 

of 3905 viral whole genomes agree well with the reference taxonomy. The 

dendrogram is colored by Baltimore Classification, viral orders, kingdom of hosts 

and different levels of genome sizes. From this dendrogram, a global view of all 

relationships among 3905 viral RefSeq genomes is demonstrated. With hundreds 

whole-genomes of Ebola viruses sequenced in 2015 West Africa Outbreak. This 

dendrogram was used as the preliminary step to show the global view of clustering 

when compare the diverse set of viral taxa, and then rigorous analysis based on 

traditional methods were employed to analyze the genomic variation of among 

Ebola virus53.   

As shown in Figure 9, all branches of the dendrogram are colored by Baltimore 

Classification, including dsDNA viruses, dsRNA viruses, Retro-transcribing 

viruses, ssDNA viruses, ssRNA positive-strand viruses, ssRNA negative-strand 

viruses. In our dendrogram, dsDNA viruses, the largest taxon, are classified into 

five major groups, which are one large group, one middle size, and three small 

groups. The second major group, ssRNA(+) virus, forms multiple small clades and 

interlaces among other groups. ssDNA viruses also form five groups, which are 

one large group and four small groups. ssRNA(-) viruses and Retro-transcribing 

viruses organize two relatively independent clades, respectively. 

The innermost circle of the dendrogram is colored by reference taxonomy at 

different orders, including Caudovirales, Herpesvirales, Ligamenvirales, 

Mononegavirales, Nidovirales, Picornavirales, Tymovirales and unclassified ones. 

From Table S1, around the reference order of 60% viruses is Caudovirales in our  



www.manaraa.com

 

23 

 

 

Figure 9 Optimal dendrogram of 3905 RefSeq viral genomes (k = 9). The braches are colored by 

Baltimore Classifications. The circles, from inside to outside, are colored by different orders, hosts 

and genome sizes. [Color information: (A) Branch: Baltimore Classification; dsDNA, no RNA 

stage: red; dsRNA: green; Retro-transcribing viruses: pink; ssDNA: blue; ssRNA negative-strand: 

bright blue; ssRNA positive-strand: yellow. (B) From inside to outside, first circle: Order; 

Caudovirales: red; Herpesvirales: green; Ligamenvirales: blue; Mononegavirales: orange; 

Nidovirales: cyan: Picornavirales: pink; Tymovirales: dark green; unclassified: silver; (C) From 

inside to outside, second circle: Host; protest: orange; archaea: red; bacteria: dark green; fungi: 

blue; animal: cyan; animal and plants: pale violet red; plant: pink; environment or NA: silver. (D) 

From inside to outside, third circle: genome size: Q1: Green, Q2: Yellow, Q3: Orange, Q4: Red.] 
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database, excluding 2171 viruses whose reference orders are unclassified or 

unassigned.Ignoring the unclassified part, those Caudovirales viruses group well, 

with a few membership discrepancies. It is interesting to note, Herpesvirales 

viruses form a small clade to split the largest clade of Caudovirales. Other 

Herpesvirales viruses also groups inside Caudovirales clades as discrepancies. 

Ligamenvirales, Mononegavirales, Nidovirales, Picornavirales and Tymovirales 

separate from each other to form small sporadic groups.  

The second circle shows the kingdoms of hosts, including archaea, bacteria, fungi, 

animal, plants, protist and environment. As can be seen, the host kingdom of most 

dsDNA viruses is bacteria. The plant viruses mainly remain in ssDNA viruses and 

ssRNA(+) viruses. The animal viruses distribute around the whole dendrogram, 

and response to various sequence structures and reference orders, which 

suggests their possible origins from transmission. The outside circle is colored by 

different levels of genome sizes. The overall trend is that genomes with similar 

sizes are easier to get together, although colors mix as local changes. 

We observed form the figure 9 that, there are a correlation between length of 

genome and dendrogram grouping as seen in the outer circle. So the dendrogram 

of subgroup base one the optimal K-mer as reported in the Table 2 will give a better 

taxonomic resolution. 

Statistical Analysis for Grouping Uncertainty 

The RefSeq dataset of 3905 genomes contains 97 known families (by the ICTV 

annotation), and 59 genomes do not have information about their families (missing 

or “unassigned” in GenBank). The ten largest families, as listed in material and 

methods, were evaluated for grouping uncertainty (Huang et al 50). Considering 

the dendrogram derived from the optimal K = 9 the descriptive statistics of within-

group and between-group distances of different viral families were calculated by 

the Kruskal-Wallis one-way analysis of variance and the Wilcoxon rank sum test.. 
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For the Kruskal-Wallis one-way analysis of variance, the null hypothesis, which is 

that the within-group and between-group distances of the largest ten families have 

equal means, is rejected (p-value < 2.2 × 10-16).  The pairwise Wilcoxon rank sum 

test shows the within-group distances are smaller than the between-group distance 

for each viral family (almost p-values < 2.2 × 10-16). Both statistical results strongly 

indicate the good grouping of the constructed dendrogram and its consistency with 

ICTV annotation. Detailed results of the statistical analysis are provided in 

Supplementary table S2. 

Subgroup Dendrograms 

The dendrogram (k = 9)  of 976 RefSeq viral genomes in subgroup Q1 (genome 

size < 25%) is shown in Figure S5. In this dendrogram, ssDNA viruses make up a 

large majority, and most of them are clustered together to form a large clade (which 

branches colored by blue). This clade has been separated by two main kinds of 

viral hosts, plants and animals. The other large clade of animal viruses is formed 

by two independen clusters of ssDNA and dsDNA. ssRNA(+) , dsRNA and RT 

viruses also can be observed. These three classes form independent small clades 

respectively, and then cluster with each other. Also, likewise with the host 

information. The orders of most viruses in subgroup Q1 are unclassified, except 

some from Tymovirales. 

 

In Figure S6, the dendrogram (k = 10) of 977 RefSeq viral genomes in subgroup 

Q2 (genome size: 25%-50%), ssRNA(+) viruses roughly forms three clusters at 

different scales. The largest cluster of ssRNA(+) has been interrupted by a few RT 

viruses and ssDNA viruses, and then forms two clades. These two clades can be 

distinguished by host features, which means animal and plant ssRNA(+) viruses 

are separated in this cluster. Also, Tymovirales viruses in this cluster are grouped 

well. The medium cluster of ssRNA(+) viruses is made up of plant viruses, and 

Tymovirales viruses are distingushed with Picornavirales viruses. 
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As shown in the dendrogram (k = 11) of 977 RefSeq viral genomes in subgroup 

Q3 (genome size: 50%-75%) (Figure S7), more than 60% viruses are dsDNA 

viruses. They are clustered together in this dendrogram, and most of them are in 

Caudovirales Family and bacterial viruses, while some special cases are either 

archaeaviruses in Ligamenvirales Family or unclassified animal viruses. The other 

40% viruses in this dendrogram are mainly ssRNA(+) viruses, ssRNA(-) viruses 

and dsRNA viruses. Each of them forms a few small clusters and then grouped 

with others. It is worth noting that animal ssRNA(+) viruses are closer to animal 

dsRNA viruses than to plant ssRNA(+) viruses, although the latter ones are in the 

same classification. Also, in this dendrogram, Mononegavirales viruses have a 

independent clade with different hosts.  

 

For the largest viruses, all most all of them are dsDNA viruses (Figure S8). The 

Caudovirales viruses, most of which are bacterial viruses, form three large clades. 

Among these three clades are animal viruses with a few protist viruses, which 

orders are Herpesvirales or unknown.  

 

Discussion 

Identifying optimal feature length in a alignment-free phylogenomic method is the 

most important but challenging process, especially when we construct 

phylogenomic trees for large-scale datasets of divergent genomes of various size. 

In this study, we have developed a comprehensive strategy to find the optimal 

length of K-mer in alignment-free phylogenomic analysis, and built phylogenomic 

dendrogram for all complete viral genomes in NCBI RefSeq as of December, 2014 

54. 

  

With the development of sequencing technologies, whole-genome information 

presents new possibilities for microbial classification 55. Comparing to traditional 
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gene trees, whole-genome phylogenies use completed genomic information and 

solve the incongruence generated by gene trees from various studies. The 

alignment-free method with K-mers is useful for comparing genomes with low 

homology and has been applied to various microbial studies. However, it is still not 

clear how to find the optimal feature length of K-mer in alignment-free 

phylogenomic analysis especially for large-scale comparison of viral genomes. 

CRE and RSD values have been used as criteria in previous studies22,24,25,28, but 

these studies used at most hundreds of genomes and their lengths do not change 

greatly. However, thousands of viral genomes in NCBI RefSeq showed a great 

difference in size which ranged from the smallest one (Anguilla anguilla circovirus) 

1,378 to the largest one (Pandoravirus salinus) 2,473,870. As a result, their CRE 

curves cannot simultaneously drop to <10% of maximum as required in previous 

study. Furthermore, CRE reflects the ability to identify individual whole genomes 

at various lengths of K. More details should be taken into consideration when 

dealing with such highly-diverse data, such as pairwise comparison information 

and shared K-mers among all genomes. Hence, we divided our dataset into four 

subgroups by 25%, 50% and 75% quantiles of genome size.  

 

In this study, we designed a comprehensive strategy to find the optimal length of 

K-mer for alignment-free FFP phylogenomic analysis. This comprehensive 

strategy combines three steps: 1) an individual genome perspective: Cumulative 

Relative Entropy (CRE) to find the minimum feature length; 2) pairwise comparison 

perspective where Average Number of Common Features (ACF) among genomes 

is applied to determine the maximum feature length; 3) an all-genome comparison 

perspective where Shannon Diversity Index of all observed feature occurrences in 

genomes to find the optimal feature length between the minimum and the 

maximum. And then, tree stability information, which obtained from Robinson-

Foulds distance, can be used to determine the optimal length K if results are not 

unique. Based on these criteria above, the optimal feature lengths for each 
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subgroup has been identified shown in Table2. To get a hint of the global 

relationship of all 3905 viral whole genomes, we chose the smallest K (K=9) among 

the optimal feature lengths for subgroups as an acceptable feature length and 

constructed a dendrogram of all viral whole genomes. 

 

In conclusion, our 3-step comprehensive strategy was successfully applied to 

identify the optimal feature length K in an alignment-free phylogenomic analysis 

for thousands of whole-genomes with highly-diverse sizes. Moreover, our 

dendrogram with the optimal feature length derived from all complete viral 

genomes gives a global view of classification in good agreement with the current 

viral taxonomy reported by ICTV and Baltimore classification. Moreover, this 

overall dendrogram can also be used as a preliminary step to show the global view 

of clustering of the diverse viral taxa and further analyze the genomic variation by 

traditional methods of specific viruses, especially Ebola viruses responsible for the 

recent outbreak in  2015 West Africa 53.  

 

Materials and Methods 

 

Dataset 

5326 RefSeq viral genomes were downloaded from the RefSeq: NCBI Reference 

Sequence Database54 (http://www.ncbi.nlm.nih.gov/refseq/) by the end of 2014. 

After merged all multiple-segmented genomes from the same virus, 4300 genomes 

were obtained. Viroid and satellite data has been excluded from the dataset, and 

then 3905 genomes were determined for this research. All genome data was 

converted to k-mer feature counts by using Jellyfish56. The database was also 

divided into four subsets by 25%, 50% and 75% quantiles of genome size, in order 

to fit different optimal feature lengths. 
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Feature Frequency Profile (FFP) and Phylogenomic Trees 

All phylogenomic trees are calculated based on Feature Frequency Profile (FFP)-

based distance matrices22. All criteria, which are related to optimal feature lengths, 

have been computed in parallel by Python 2.7. Phylogenomic trees are calculated 

from distance matrices based on Neighbor Joining method, by using R package 

phytools 57. All dendrograms were plotted by the ITOL online tool 

(http://itol.embl.de/itol.cgi), and the other figures were generated by R software.  

Optimal feature lengths  

As shown in Figure 10, the optimal feature lengths have been determined by three 

criteria: 1) from individual genome perspective using Cumulative Relative Entropy 

(CRE); 2) from pairwise comparison perspective: Average Number of Common 

Features (ACF) among genomes; 3) from all genome comparison perspective: all 

observed feature occurrences in genomes. If multiple values of feature lengths are 

determined after this process, tree stability will be used to find the optimal length. 

Cumulative Relative Entropy (CRE): A general description of CRE can be found in 

previously published paper 28, and  the optimal feature length K was considered 

as where genome curves start having zero CRE or falling to <10% of their CRE 

maximum values. The CRE has been calculated as25: 

���(�) = 	∑ ��(��, ���)
�
���   (1) 

and 

�����, ���� = 	∑ ������
��

���
�   (2) 

Where l is the feature length, �� is the observed feature frequency, and ��� is the 

expected frequency formulated from K-2 Markov chain as in the previous 

publication 58 . Since the Relative Entropy (Kullback–Leibler divergence) 59 is 

always non-negative value, the function of CRE is monotonically decreasing. 
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Figure 10 The 3-step assessment to obtain optimal feature lengths (k). 

 

In previous published papers 22,25, Relative Sequence Divergence (RSD) has also 

been used to determine the optimal feature length. However, RSD cannot be 

applied for this research. Because our 3905 genomes provide a huge feature 

space, the overlap in feature space between the viral genomes and random 

sequence does not reduce. As a result, not all RSD values decrease to zero as 

expected. From another aspect, the random sequences are only generated once, 

without any iteration, and the iteration can be time-costing. So, RSD was failed to 

be used in this research. But enlightened by this value, we developed Average 
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Number of Common Features (ACF) to check the overlap in feature space among 

genomes. 

 

Average Number of Common Features (ACF): For pairwise genomes, the similarity 

in FFP method is actually held by the common features between them. When the 

K is small, most features in one viral genome can be shared by the other one. 

However, the all possible feature number is small (4K), so the average number 

should be low. On the other side, when the K is very large, because the features 

are long, only a few features can be shared between pairwise genomes. In this 

case, FFP may not provide enough signals for phylogeny and may show a random 

phylogeny. Therefore, the optimal K should be chosen before the ACF dropping to 

low values. The ACF can be defined as: 

���(�) = ∑ �(��, ��, ���� )/(� − 1) (3) 

where �(��, ��, �) is the number of common feature of length l between sequences 

��  and �� , and � is the genome number is the database. We used 10% of the 

maximum ACF of the considered population as suggestive cut-off similar to the 

suggestion on RSD 22,25.  

 

All observed feature occurrences in genomes: From the perspective of all 

genomes, to balance the similarity and dissimilarity, neither of these situations is 

acceptable in FFP: 1) most features can be found in most genomes (when feature 

length is too small); 2) most features are unique (when feature length is too large). 

In this purpose, the unions of all observed features at different k were calculated 

in our dataset, and also their occurrence in genomes. Theoretically, the number of 

all possible features is 4K. However, the biological sequence is not a random 

combination of alphabets. As a result, the percentage of observed ones decreases 

with feature length increasing, in our 3905 genomes. To balance the measure of 

similarity and dissimilarity, the occurrence for all observed features can be 

measured by Shannon Diversity Index60: 
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�� = −∑ �� ln��
�
���  (4) 

Where �� is the probability of features can be found in i genomes and N is total 

genome number in the database. With the specific length k, the number of 

observed kmers is Ok (Ok ≤ 4k). Ci kmers, can be found in i genomes (1 ≤ i ≤ N). 

The pi can be calculated as pi = Ck / Ok. For example, to calculate the Shannon 

Diversity Index of the K=9 dendrogram, the Ok = 262,144.  We assume there are 

C5 kmers that can be found in 5 genomes, which means any of these C5 kmers 

exists in 5 genomes among the 3905 genomes.  Here p5= C5 / 262144 (i = 5). The 

Shannon Diversity Index can be calculated by adding values from p1 to p3905.  

 

Tree Stability: Although 3-step process is applied to check the optimal feature 

length, it is still possible that inconsistent results can be obtains from three criteria. 

To strengthen the feasibility of our method, we use tree stability as an additional 

information to determine the optimal feature length. Tree stability is estimated by 

calculating the topology difference between trees at feature length k (k = 5, 6, 7, 

……) and k + 1 using Robinson-Foulds distance 61, which is a metric to compare 

differences between two phylogenies. Therefore, when the Robinson-Foulds 

distances between tree at feature length k and k+1 decrease to a low value, it 

means the tree stability starts at this k point and tree topology does not change 

much as k increases.  In our case, trees start to converge at k =9, so k = 9 has 

been chosen as the optimal feature length of the global dendrogram. 

Evaluation of grouping uncertainty  

The dendrogram (k=9) was evaluated for grouping uncertainty by viral family 

annotation, based on ICTV classification, using the statistical methods described 

by Huang 50. Kruskal-Wallis one-way analysis of variance test was employed to 

evaluate the difference of the distance mean between within-groups and between-

groups. Wilcoxon rank sum test was employed to evaluate the difference of 

distance mean between within-group and between-group for each group. The top 
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10 highest members of viral families which are 1  Siphoviridae (657 viruses), 

Geminiviridae (364 viruses), Myoviridae (307 viruses), Podoviridae (218 viruses), 

Papillomaviridae (125 viruses), Potyviridae (119 viruses), Parvoviridae (81 

viruses), Picornaviridae (73 viruses), Flaviviridae (70 viruses) and Betaflexiviridae 

(66 viruses) were selected to perform the statistical analyses.        

 

Acknowledgements 

We gratefully thank Visanu Wanchai and Miraim Land for their technical 

assistance.  

Author contribution Statement 

QZ, SJ, ML collected and cleaned viral Refseq data set. QZ, SJ performed data 

analysis and draft the manuscript. IN, DU, SJ supervised QZ. IN designed, 

conceived and conduct the project. All authors discussed the results and 

implications and commented on the manuscript at all stages. 

Competing financial interests 

The authors declare no competing financial interests. 

  



www.manaraa.com

 

34 

 

CHAPTER THREE  

CONCLUSIONS 

 

This thesis designed a 3-step comprehensive strategy for identifying the optimal 

length of K-mer in a viral phylogenomic analysis using genomic alignment-free 

method. This comprehensive strategy consists of three steps: 1) an individual 

genome perspective: CRE value to find the minimum feature length; 2) pairwise 

comparison perspective where ACF value among genomes is applied to determine 

the maximum feature length; 3) an all-genome comparison perspective where 

Shannon Diversity Index of all observed feature occurrences in genomes to find 

the optimal feature length between the minimum and the maximum. Also, tree 

stability information, which obtained from Robinson-Foulds distances, has been 

used as an assistant criterion to determine the optimal length K if results are not 

unique. By applying this strategy, we determined the optimal K-mer length (K=9) 

and reconstructed the dendrogram of 3905 completed viral RefSeq genomes in 

NCBI. This dendrogram gives a global view of classification in good agreement 

with the current viral taxonomy reported by ICTV and Baltimore classification. 

Additionally, statistical analysis was also done to test the grouping uncertainty. 

 

 

 

 

 

 

  



www.manaraa.com

 

35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LIST OF REFERENCES 

  



www.manaraa.com

 

36 

 

1. Shendure, J. & Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 26, 

1135–1145 (2008). 

2. Bentley, D. R. Whole-genome re-sequencing. Curr. Opin. Genet. Dev. 16, 

545–552 (2006). 

3. Hasman, H. et al. Rapid whole-genome sequencing for detection and 

characterization of microorganisms directly from clinical samples. J. Clin. 

Microbiol. 52, 139–46 (2014). 

4. Bao, Y. et al. National center for biotechnology information viral genomes 

project. J. Virol. 78, 7291–8 (2004). 

5. Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI Reference Sequence 

(RefSeq): a curated non-redundant sequence database of genomes, 

transcripts and proteins. Nucleic Acids Res. 33, D501-4 (2005). 

6. Brinkman, F. S. L. & Leipe, D. D. in Bioinformatics: a practical guide to the 

analysis of genes and proteins 2, 349 (Wiley-Interscience. Nueva York, 

2001). 

7. Gao, Y. et al. Phylogenetic analysis of porcine epidemic diarrhea virus field 

strains prevailing recently in China. Arch. Virol. 158, 711–715 (2013). 

8. Jacques, M.-A. et al. Phylogenetic analysis and polyphasic characterization 

of Clavibacter michiganensis strains isolated from tomato seeds reveal that 

nonpathogenic strains are distinct from C. michiganensis subsp. 

michiganensis. Appl. Environ. Microbiol. 78, 8388–402 (2012). 

9. Mi, H., Muruganujan, A. & Thomas, P. D. PANTHER in 2013: modeling the 

evolution of gene function, and other gene attributes, in the context of 

phylogenetic trees. Nucleic Acids Res. 41, D377-86 (2013). 

10. Jones, P. et al. InterProScan 5: genome-scale protein function classification. 

Bioinformatics 30, 1236–40 (2014). 

11. Casali, N. et al. Evolution and transmission of drug-resistant tuberculosis in 

a Russian population. Nat. Genet. 46, 279–86 (2014). 

12. Morrison, D. A. et al. L. A. S. JOHNSON REVIEW No. 8. Multiple sequence 



www.manaraa.com

 

37 

 

alignment for phylogenetic purposes. Aust. Syst. Bot. 19, 479 (2006). 

13. Soltis, D. E. & Soltis, P. S. Applying the Bootstrap in Phylogeny 

Reconstruction. Stat. Sci. 18, 256–267 (2003). 

14. Lapointe, F.-J., Kirsch, J. A. W. & Bleiweiss, R. Jackknifing of Weighted 

Trees: Validation of Phylogenies Reconstructed from Distance Matrices. 

Mol. Phylogenet. Evol. 3, 256–267 (1994). 

15. Delsuc, F., Brinkmann, H. & Philippe, H. Phylogenomics and the 

reconstruction of the tree of life. Nat. Rev. Genet. 6, 361–75 (2005). 

16. Comin, M. & Verzotto, D. Alignment-free phylogeny of whole genomes using 

underlying subwords. Algorithms Mol. Biol. 7, 34 (2012). 

17. Horwege, S. et al. Spaced words and kmacs: fast alignment-free sequence 

comparison based on inexact word matches. Nucleic Acids Res. 42, W7-11 

(2014). 

18. Leimeister, C.-A. & Morgenstern, B. Kmacs: the k-mismatch average 

common substring approach to alignment-free sequence comparison. 

Bioinformatics 30, 2000–8 (2014). 

19. Huang, H. H. & Yu, C. Clustering DNA sequences using the out-of-place 

measure with reduced n-grams. J. Theor. Biol. 406, 61–72 (2016). 

20. Vinga, S. & Almeida, J. Alignment-free sequence comparison-a review. 

Bioinformatics 19, 513–23 (2003). 

21. Bonham-Carter, O., Steele, J. & Bastola, D. Alignment-free genetic 

sequence comparisons: A review of recent approaches by word analysis. 

Brief. Bioinform. 15, 890–905 (2013). 

22. Sims, G. E., Jun, S.-R., Wu, G. A. & Kim, S.-H. Alignment-free genome 

comparison with feature frequency profiles (FFP) and optimal resolutions. 

Proc. Natl. Acad. Sci. U. S. A. 106, 2677–82 (2009). 

23. Sims, G. E. & Kim, S.-H. Whole-genome phylogeny of Escherichia 

coli/Shigella group by feature frequency profiles (FFPs). Proc. Natl. Acad. 

Sci. U. S. A. 108, 8329–34 (2011). 



www.manaraa.com

 

38 

 

24. Sims, G. E., Jun, S.-R., Wu, G. A. & Kim, S.-H. Whole-genome phylogeny 

of mammals: evolutionary information in genic and nongenic regions. Proc. 

Natl. Acad. Sci. U. S. A. 106, 17077–82 (2009). 

25. Wu, G. A., Jun, S.-R., Sims, G. E. & Kim, S.-H. Whole-proteome phylogeny 

of large dsDNA virus families by an alignment-free method. Proc. Natl. Acad. 

Sci. U. S. A. 106, 12826–31 (2009). 

26. Furuse, Y., Suzuki, A., Kamigaki, T. & Oshitani, H. Evolution of the M gene 

of the influenza A virus in different host species: large-scale sequence 

analysis. Virol. J. 6, 67 (2009). 

27. Shi, W. et al. Identification of novel inter-genotypic recombinants of human 

hepatitis B viruses by large-scale phylogenetic analysis. Virology 427, 51–9 

(2012). 

28. Jun, S.-R., Sims, G. E., Wu, G. A. & Kim, S.-H. Whole-proteome phylogeny 

of prokaryotes by feature frequency profiles: An alignment-free method with 

optimal feature resolution. Proc. Natl. Acad. Sci. U. S. A. 107, 133–8 (2010). 

29. Royer-Bertrand, B. & Rivolta, C. Whole genome sequencing as a means to 

assess pathogenic mutations in medical genetics and cancer. Cell. Mol. Life 

Sci. 72, 1463–71 (2015). 

30. Schlötterer, C., Tobler, R., Kofler, R. & Nolte, V. Sequencing pools of 

individuals — mining genome-wide polymorphism data without big funding. 

Nat. Rev. Genet. 15, 749–63 (2014). 

31. Wyres, K. L. et al. WGS Analysis and Interpretation in Clinical and Public 

Health Microbiology Laboratories: What Are the Requirements and How Do 

Existing Tools Compare? Pathog. (Basel, Switzerland) 3, 437–58 (2014). 

32. Chrystoja, C. C. & Diamandis, E. P. Whole genome sequencing as a 

diagnostic test: challenges and opportunities. Clin. Chem. 60, 724–33 

(2014). 

33. Schadt, E. E., Linderman, M. D., Sorenson, J., Lee, L. & Nolan, G. P. 

Computational solutions to large-scale data management and analysis. Nat. 



www.manaraa.com

 

39 

 

Rev. Genet. 11, 647–57 (2010). 

34. Braun, R. Systems analysis of high-throughput data. Adv. Exp. Med. Biol. 

844, 153–87 (2014). 

35. Brister, J. R., Ako-Adjei, D., Bao, Y. & Blinkova, O. NCBI viral genomes 

resource. Nucleic Acids Res. 43, D571-7 (2015). 

36. Simmonds, P. Methods for virus classification and the challenge of 

incorporating metagenomic sequence data. J. Gen. Virol. 96, 1193–206 

(2015). 

37. Adams, M. J., Hendrickson, R. C., Dempsey, D. M. & Lefkowitz, E. J. 

Tracking the changes in virus taxonomy. Arch. Virol. 160, 1375–83 (2015). 

38. Radoshitzky, S. R. et al. Past, present, and future of arenavirus taxonomy. 

Arch. Virol. 160, 1851–74 (2015). 

39. CALISHER, C. H. & MAHY, B. W. J. TAXONOMY: GET IT RIGHT OR 

LEAVE IT ALONE. Am J Trop Med Hyg 68, 505–506 (2003). 

40. Hannigan, G. D. et al. The human skin double-stranded DNA virome: 

topographical and temporal diversity, genetic enrichment, and dynamic 

associations with the host microbiome. MBio 6, e01578-15 (2015). 

41. Skvortsov, T. et al. Metagenomic Characterisation of the Viral Community of 

Lough Neagh, the Largest Freshwater Lake in Ireland. PLoS One 11, 

e0150361 (2016). 

42. Seto, D., Chodosh, J., Brister, J. R. & Jones, M. S. Using the whole-genome 

sequence to characterize and name human adenoviruses. J. Virol. 85, 

5701–2 (2011). 

43. Brown, J. K. et al. Revision of Begomovirus taxonomy based on pairwise 

sequence comparisons. Arch. Virol. 160, 1593–619 (2015). 

44. Ohno, T. et al. Usefulness and limitation of phylogenetic analysis for hepatitis 

C virus core region: application to isolates from Egyptian and Yemeni 

patients. Arch. Virol. 141, 1101–1113 (1996). 

45. Narechania, A., Chen, Z., DeSalle, R. & Burk, R. D. Phylogenetic 



www.manaraa.com

 

40 

 

incongruence among oncogenic genital alpha human papillomaviruses. J. 

Virol. 79, 15503–10 (2005). 

46. Holmes, E. C. & Rambaut, A. Viral evolution and the emergence of SARS 

coronavirus. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 359, 1059–65 (2004). 

47. Wu, B. et al. Assessment of codivergence of mastreviruses with their plant 

hosts. BMC Evol. Biol. 8, 335 (2008). 

48. Rokas, A., Williams, B. L., King, N. & Carroll, S. B. Genome-scale 

approaches to resolving incongruence in molecular phylogenies. Nature 

425, 798–804 (2003). 

49. Huang, H. H. et al. Global comparison of multiple-segmented viruses in 12-

dimensional genome space. Mol. Phylogenet. Evol. 81, 29–36 (2014). 

50. Huang, H. H. An ensemble distance measure of k-mer and Natural Vector 

for the phylogenetic analysis of multiple-segmented viruses. J. Theor. Biol. 

398, 136–144 (2016). 

51. Labonté, J. M. & Suttle, C. A. Previously unknown and highly divergent 

ssDNA viruses populate the oceans. ISME J. 7, 2169–77 (2013). 

52. Tatusova, T. et al. Update on RefSeq microbial genomes resources. Nucleic 

Acids Res. 43, D599-605 (2015). 

53. Jun, S. R. et al. Ebolavirus comparative genomics. FEMS Microbiol. Rev. 

39, 764–778 (2015). 

54. Pruitt, K., Brown, G., Tatusova, T. & Maglott, D. The Reference Sequence 

(RefSeq) Database. (2012). 

55. Varghese, N. J. et al. Microbial species delineation using whole genome 

sequences. Nucleic Acids Res. 43, 6761–6771 (2015). 

56. Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel 

counting of occurrences of k-mers. Bioinformatics 27, 764–70 (2011). 

57. Revell, L. J. phytools: an R package for phylogenetic comparative biology 

(and other things). Methods Ecol. Evol. 3, 217–223 (2012). 

58. Sadovsky, M. G. Comparison of Real Frequencies of Strings vs. the 



www.manaraa.com

 

41 

 

Expected Ones Reveals the Information Capacity of Macromoleculae. J. 

Biol. Phys. 29, 23–38 (2003). 

59. Kullback, S. & Leibler, R. A. On Information and Sufficiency. Ann. Math. Stat. 

22, 79–86 (1951). 

60. Shannon, C. E. A mathematical theory of communication. ACM SIGMOBILE 

Mob. Comput. Commun. Rev. 5, 3 (2001). 

61. Robinson, D. F. & Foulds, L. R. Comparison of phylogenetic trees. Math. 

Biosci. 53, 131–147 (1981). 

 

  



www.manaraa.com

 

42 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 

  



www.manaraa.com

 

43 

 

Supplement Materials 

Table S 1 Baltimore classification and ICTV Orders Information 

Baltimore Classification counts  ICTV Order counts 

dsDNA viruses, no RNA stage  1826  Caudovirales                           1208 

(+)ssRNA viruses  911  Picornavirales                          157 

ssDNA viruses  649  Tymovirales                             141 

dsRNA viruses  192  Mononegavirales                          91 

(-)ssRNA viruses  180  Herpesvirales                            67 

Retro-transcribing viruses 131  Nidovirales                              58 

Unclassified viruses  8  Ligamenvirales                           12 

Unclassified virophages  5  Unassigned or Unclassified 2171 

Unassigned ssRNA viruses  3    
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Figure 11 Distribution of feature occurrences in subgroup Q1 (size < 25%) 
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Figure 12 Distribution of feature occurrences in subgroup Q2 (25% < size < 50%) 
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Figure 13 Distribution of feature occurrences in subgroup Q3 (50% < size < 75%) 
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Figure 14 Distribution of feature occurrences in subgroup Q4 (size > 75%) 
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Figure 15 Dendrogram of 976 RefSeq viral genomes in subgroup Q1 (genome size < 25%), when 

k=9. The braches are colored by Baltimore Classifications. The circles, from inside to outside, are 

colored by different orders and hosts. [Color information: (A) Branch: Baltimore Classification; 

dsDNA, no RNA stage: red; dsRNA: green; Retro-transcribing viruses: pink; ssDNA: blue; ssRNA 

negative-strand: bright blue; ssRNA positive-strand: yellow. (B) From inside to outside, first circle: 

Order; Caudovirales: red; Herpesvirales: green; Ligamenvirales: blue; Mononegavirales: orange; 

Nidovirales: cyan: Picornavirales: pink; Tymovirales: dark green; unclassified: silver; (C) From 

inside to outside, second circle: Host; protest: orange; archaea: red; bacteria: dark green; fungi: 

blue; animal: cyan; animal and plants: pale violet red; plant: pink; environment or NA: silver.] 
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Figure 16 Dendrogram of 977 RefSeq viral genomes in subgroup Q2 (genome size: 25%-50%), 

when k=10. The braches are colored by Baltimore Classifications. The circles, from inside to 

outside, are colored by different orders and hosts. [Color information: (A) Branch: Baltimore 

Classification; dsDNA, no RNA stage: red; dsRNA: green; Retro-transcribing viruses: pink; 

ssDNA: blue; ssRNA negative-strand: bright blue; ssRNA positive-strand: yellow. (B) From inside 

to outside, first circle: Order; Caudovirales: red; Herpesvirales: green; Ligamenvirales: blue; 

Mononegavirales: orange; Nidovirales: cyan: Picornavirales: pink; Tymovirales: dark green; 

unclassified: silver; (C) From inside to outside, second circle: Host; protest: orange; archaea: red; 

bacteria: dark green; fungi: blue; animal: cyan; animal and plants: pale violet red; plant: pink; 

environment or NA: silver.] 
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Figure 17 Dendrogram of 977 RefSeq viral genomes in subgroup Q3 (genome size: 50%-75%), 

when k=11. The braches are colored by Baltimore Classifications. The circles, from inside to 

outside, are colored by different orders and hosts. [Color information: (A) Branch: Baltimore 

Classification; dsDNA, no RNA stage: red; dsRNA: green; Retro-transcribing viruses: pink; 

ssDNA: blue; ssRNA negative-strand: bright blue; ssRNA positive-strand: yellow. (B) From inside 

to outside, first circle: Order; Caudovirales: red; Herpesvirales: green; Ligamenvirales: blue; 

Mononegavirales: orange; Nidovirales: cyan: Picornavirales: pink; Tymovirales: dark green; 

unclassified: silver; (C) From inside to outside, second circle: Host; protest: orange; archaea: red; 

bacteria: dark green; fungi: blue; animal: cyan; animal and plants: pale violet red; plant: pink; 

environment or NA: silver.] 
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Figure 18 Dendrogram of 977 RefSeq viral genomes in subgroup Q4 (genome size: >75%), when 

k=12. The braches are colored by Baltimore Classifications. The circles, from inside to outside, 

are colored by different orders and hosts. [Color information: (A) Branch: Baltimore Classification; 

dsDNA, no RNA stage: red; dsRNA: green; Retro-transcribing viruses: pink; ssDNA: blue; ssRNA 

negative-strand: bright blue; ssRNA positive-strand: yellow. (B) From inside to outside, first circle: 

Order; Caudovirales: red; Herpesvirales: green; Ligamenvirales: blue; Mononegavirales: orange; 

Nidovirales: cyan: Picornavirales: pink; Tymovirales: dark green; unclassified: silver; (C) From 

inside to outside, second circle: Host; protest: orange; archaea: red; bacteria: dark green; fungi: 

blue; animal: cyan; animal and plants: pale violet red; plant: pink; environment or NA: silver.] 
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Table S 2 Wilcoxon rank sum test result of the top 10 highest members of viral family. 

Siphoviridae Geminiviridae Myoviridae Podoviridae Papillomaviridae Potyviridae Parvoviridae Picornaviridae Flaviviridae Betaflexiviridae

Siphoviridae vs. Geminiviridae < 2.2 E-16 < 2.2 E-16

Siphoviridae vs. Myoviridae < 2.2 E-16 < 2.2 E-16

Siphoviridae vs. Podoviridae < 2.2 E-16 < 2.2 E-16

Siphoviridae vs. Papillomaviridae < 2.2 E-16 < 2.2 E-16

Siphoviridae vs. Potyviridae < 2.2 E-16 < 2.2 E-16

Siphoviridae vs. Parvoviridae < 2.2 E-16 < 2.2 E-16

Siphoviridae vs. Picornaviridae < 2.2 E-16 < 2.2 E-16

Siphoviridae vs. Flaviviridae < 2.2 E-16 < 2.2 E-16

Siphoviridae vs. Betaflexiviridae < 2.2 E-16 < 2.2 E-16

Geminiviridae vs. Myoviridae < 2.2 E-16 < 2.2 E-16

Geminiviridae vs. Podoviridae < 2.2 E-16 < 2.2 E-16

Geminiviridae vs. Papillomaviridae < 2.2 E-16 < 2.2 E-16

Geminiviridae vs. Potyviridae < 2.2 E-16 < 2.2 E-16

Geminiviridae vs. Parvoviridae < 2.2 E-16 < 2.2 E-16

Geminiviridae vs. Picornaviridae < 2.2 E-16 < 2.2 E-16

Geminiviridae vs. Flaviviridae < 2.2 E-16 < 2.2 E-16

Geminiviridae vs. Betaflexiviridae < 2.2 E-16 < 2.2 E-16

Myoviridae vs. Podoviridae < 2.2 E-16 < 2.2 E-16

Myoviridae vs. Papillomaviridae < 2.2 E-16 < 2.2 E-16

Myoviridae vs. Potyviridae < 2.2 E-16 < 2.2 E-16

Myoviridae vs. Parvoviridae < 2.2 E-16 < 2.2 E-16

Myoviridae vs. Picornaviridae < 2.2 E-16 < 2.2 E-16

Myoviridae vs. Flaviviridae < 2.2 E-16 < 2.2 E-16

Myoviridae vs. Betaflexiviridae < 2.2 E-16 < 2.2 E-16

Podoviridae vs. Papillomaviridae < 2.2 E-16 < 2.2 E-16

Podoviridae vs. Potyviridae < 2.2 E-16 < 2.2 E-16

Podoviridae vs. Parvoviridae < 2.2 E-16 < 2.2 E-16

Podoviridae vs. Picornaviridae < 2.2 E-16 < 2.2 E-16

Podoviridae vs. Flaviviridae < 2.2 E-16 < 2.2 E-16

Podoviridae vs. Betaflexiviridae < 2.2 E-16 < 2.2 E-16

Papillomaviridae vs. Potyviridae < 2.2 E-16 < 2.2 E-16

Papillomaviridae vs. Parvoviridae < 2.2 E-16 < 2.2 E-16

Papillomaviridae vs. Picornaviridae < 2.2 E-16 < 2.2 E-16

Papillomaviridae vs. Flaviviridae < 2.2 E-16 < 2.2 E-16

Papillomaviridae vs. Betaflexiviridae < 2.2 E-16 < 2.2 E-16

Potyviridae vs. Parvoviridae < 2.2 E-16 < 2.2 E-16

Potyviridae vs. Picornaviridae < 2.2 E-16 0.249381472

Potyviridae vs. Flaviviridae < 2.2 E-16 < 2.2 E-16

Potyviridae vs. Betaflexiviridae < 2.2 E-16 < 2.2 E-16

Parvoviridae vs. Picornaviridae 0.40400024 < 2.2 E-16

Parvoviridae vs. Flaviviridae < 2.2 E-16 < 2.2 E-16

Parvoviridae vs. Betaflexiviridae 9.69E-14 < 2.2 E-16

Picornaviridae vs. Flaviviridae 0.017555005 < 2.2 E-16

Picornaviridae vs. Betaflexiviridae < 2.2 E-16 < 2.2 E-16

Flaviviridae vs. Betaflexiviridae < 2.2 E-16 < 2.2 E-16  

  



www.manaraa.com

 

53 

 

VITA 

 

 Qian Zhang was born in Jinan, China, where is a beautiful city well known 

for sweet springs and nice people. After graduating from Shandong Experimental 

High School in 2005, she attended Shandong University in the same city. Upon 

graduating with her double B.S. degrees in Preventive Medicine and Information 

& Computational Science in 2010, Qian obtained her M.S in Biostatistics from the 

same University. She enrolled at University of Texas, Houston in 2013 and 

transferred to University of Tennessee, Knoxville in 2014, because of family. She 

joined Comparative Genomics Group in ORNL in March 2014 under the guidance 

of Dr. Dave Ussery. 

 


	Strategies for Identifying the Optimal Length of K-mer in a Viral Phylogenomic Analysis using Genomic Alignment-free Method
	Recommended Citation

	/var/tmp/StampPDF/K3ADfZaVhW/tmp.1478811852.pdf._rm9k

